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The s-d exchange-interaction model has been widely used to explain many properties of magnetic metals 
and alloys. In particular, it has been suggested that the short-range order of the spins in a dilute magnetic 
alloy may give rise to the resistivity minimum effect. This paper gives a general discussion of the effect of 
spin correlation on the resistivity. The short-range correlation of the spins is investigated by the cluster 
expansion method. For dilute manganese-copper alloys where the Mn spins are believed to be coupled by 
the indirect exchange mechanism, the predicted variation in resistivity around the temperature where the 
minimum occurs is about 2 orders of magnitude smaller than the observed value. Hence, this model does not 
seem to explain the resistivity minimum phenomenon. 

I. INTRODUCTION 

MANY dilute alloys exhibit the resistivity minimum 
phenomenon.1 The recent experiment of Gold 

et al? makes it seem certain that this phenomenon is 
caused by the transition metal impurities. As a sum­
mary of the experimental findings, one observes that 
the minimum resistivity is roughly proportional to the 
impurity concentration, and the temperature To at 
which the minimum occurs depends on the impurity 
concentration x through the power law 

(To)n*x, (1) 

where n=5-6. These materials are also found to have 
negative magnetoresistance and anomalously large 
thermoelectric power. In some alloys the resistivity 
also has a maximum at a somewhat lower temperature. 

One explanation of the resistivity minimum was put 
forward by Korringa and Gerritsen,3 who postulated 
that the scattering between the electrons and the tran­
sition metal ions undergoes a resonance when the 
electron nearly has the Fermi energy. This model seems 
to explain the phenomenon quite well, even though the 
basic mechanism for the scattering interaction is not 
understood. Recently Hedgcock and Muir4 found 
further evidence for the resonant scattering from 
deHaas-van Alphen measurement on zinc-manganese 
alloys. 

Another model that has been rather popular lately 
is the s-d exchange interaction model. The basic 
postulate is that there is a spin-dependent interaction 
between the conduction electrons and the impurity ions. 

1 For reviews of the problem, see J. M. Ziman, Electrons and 
Phonons (Oxford University Press, London, 1960), p. 344; F. J. 
Blatt, in Solid State Physics, edited by F. Seitz and D. Turnbull 
(Academic Press Inc., New York, 1957), Vol. 4, p. 200; D. K. C. 
MacDonald, in Handbuch der Physik, edited by S. Flligge 
(Springer-Verlag, Berlin, 1956), Vol. 14, p. 137. For recent publi­
cations not covered by these reviews, see the references listed in 
R. R. Hake, D. H. Leslie, and T. G. Belincourt, Phys. Rev. 127, 
170 (1962). 

2 A. V. Gold, D. K. C. MacDonald, W. B. Pearson, and I. M. 
Templeton, Phil. Mag. 5, 765 (1960). 

3 J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953). 
4 F. T. Hedgcock and W. B. Muir, Phys. Rev. 129, 2045 (1963). 

Yosida5 showed that this interaction can account for 
the negative magnetoresistance of these materials. If 
the coupling between the impurity spins is approxi­
mated by an effective field, the eventual drop in re­
sistivity of some alloys at low temperatures can also be 
understood. Brailsford and Overhauser6 suggested that 
the resistivity minimum may be due to the ferromag­
netic interaction between the spins. They showed that 
when a pair of closely spaced spins are f erromagnetically 
coupled, they tend to scatter the electrons more 
strongly than two uncoupled spins. The extra resistivity 
has roughly the observed temperature dependence and 
is proportional to the square of the impurity concen­
tration. A very similar model was also discussed by 
Dekker.7 

The result of Brailsford and Overhauser seems to 
suggest that the resistivity is sensitive to the short-
range order of the spins. The present paper investigates 
this possibility in a general way. I t is assumed that the 
spins are coupled by the most general type of long-range 
interaction. The short-range correlation between the 
spins is investigated by the cluster expansion method. 
The resistivity is calculated by solving the Boltzmann 
equation. The result is that the resistivity due to spin 
scattering can be expressed in the form 

p8 = Po+a/T+0(l/T*); (2) 

where po is proportional to the impurity concentration 
x, and a is proportional to x2. Under suitable conditions 
a can be positive, so p may increase upon lowering the 
temperature and, when combined with the phonon-
scattering contribution, give rise to a minimum. These 
conclusions are in qualitative agreement with Brailsford 
and Overhauser. However, if one tries to fit the experi­
mental curves by Eq. (2), one finds that a should be 
roughly proportional to x for most dilute alloys. Hence, 
the short-range effect does not seem to satisfactorily 
explain the minimum. Moreover, if one takes the spin 

* K. Yosida, Phys. Rev. 107, 396 (1957). 
6 A. D. Brailsford and A. W. Overhauser, J. Phys. Chem. Solids 

15, 140 (1960). 
7 A. J. Dekker, Physica 25, 1244 (1959). 
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coupling to be the Ruderman-Kittel-Kasuya-Yosida 
coupling,8-10 as commonly assumed, one finds that the 
size of the short-range effect in these alloys is also too 
small to play a role. 

II. BASIC FORMULATION 

The model system is described by a total Hamiltonian 
H which consists of the unperturbed Hamiltonian for 
the Bloch electrons Ho, the spin Hamiltonian Hs, and 
the interaction Hamiltonian Hi. Explicitly,9,10 

H0 = Y1 ekCks*Cks, (3) 
ks 

Hs=-Z /<A-Sy, (4) 
(i,3) 

Hr=— £ X) [S/(ck't*£kt-Ck'**£u) 
27Vrk,k' i 

+ 5 / c k a * C k t + 5 r ^ t * ^ > , a ^ k / ) ' R ^ . (5) 

Here Cks j Cks are the creation and annihilation operators 
of an electron in the state of momentum k and spin s, 
ek is the energy of this state; Ry and Sy are the position 
and spin of the yth ion; / is the matrix element of the 
s-d interaction; N is the total number of ions in the 
sample. In the spherical-band approximation, ek de­
pends only on the size of k. The coupling constant J a 
is a function of the vector distance R# of the two spins. 
The interaction Hi should also contain a spin-inde­
pendent part. However, since this part gives rise to a 
temperature-independent resistivity and since there is 
no cross-product term between the spin-independent 
and the spin-dependent interactions when there is no 
long-range order, one may ignore the spin-independent 
interaction in the present discussion. The matrix 
element / should normally be a function of the initial 
and final momenta k and k'. I t is simplified here to 
facilitate the calculation. 

The electrical resistivity due to the interaction Hi is 
calculated by the Boltzmann equation method. For 
general scatterings the Boltzmann equation has the 
form11 

(d/</d/)drift+ (d/K/d/)coii= 0 , (6) 

where fK is the distribution function for the electron 
state K; K designates both the momentum k and the spin 
s. The two terms in Eq. (6) are defined by (fi= 1) 

(d/ ( t/dOdrift=-«E-Vk/,°, (7) 

'—) = E [ ^ « / « ' ( l - / c ) - W r « ' / « ( l - / . ) ] , (8) 
^ dt /coil K' 

8 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 
9 T . Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956). 
10 K. Yosida, Phys. Rev. 106, 893 (1957). 
11 P. N. Argyres, J. Phys. Chem. Solids 19, 66 (1961). This 

special form of the transport equation is used because it seems to 
be the correct equation that can be derived from quantum 
mechanics. 

where fK° is the unperturbed distribution function 
/ , °= [>«*-«*>+1]-1 , p=l/kBT. The transition rate 
WKK> is given by 

WKK, = T,P«Y,2ir\(afK'\Hi\aK)\* 
a af 

X8(Ea+ek-Ea,-ek,), (9) 

where a, a' label the spin states such that 
Hs\a) = Ea\a), 

(10) 
pa = (a\p\a) = (a\e~PHs\a)/ ^2 (a\e~^Hs\a). 

a 

p is the density matrix for the spins, and the states | a) 
form a complete orthonormal set. Using the identity 

1 rw 

5(x) = — / eiixd$, 
2T J _oo 

one can readily write 

/.00 

WM. = L pa E / « i (*"*' ) f(aV I e-W'Hie*11*\cue) 

X{aK\Hi\afK')d$. 

Defining {HI)K'K={K'\ Hi\ K), one finds after some simple 
manipulations 

X T r t r ^ ^ ) , / ^ ^ ) ^ ] , (11) 

where the trace is taken over all the eigenstates of the 
spin system. The quantity WK>K can be found by ex­
changing the indices K and K! in Eq. (11). Next, one 
evaluates (Hi)K>K from Eq. (5) and substitutes the result 
into Eq. (11). This gives 

P r" 
W W t = • / ei(-€k-~ek,)!d{ 

X T r [ £ e-W'Sfe^pS^e^-^-^, 
a 

and similar expressions for JFktk'*, etc. The trace has 
the form of a two-time correlation function of the spins 
because, if one defines 

S<(r) = e^'S t-e-^», 
one finds 

TxlZ e~i^St
zei^pSj^ei(k~k,)'Rii 

=E<s/(f)s/(o)y *-*'>•««, 
ij 

where ( ) denotes a thermal average. Putting these 
results into Eq. (8) and averaging over the spin states 
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of the incoming electron, one obtains 

/d/k \ P /•» 
( —) =— E / e^-^W^^o).^)) 
\ dt /con 4iV2 k' J_„ a 

xMi-f*)-(S,Q;ySM)Mi-fv)} 
x^(k-k').R;y. (12) 

Hence, the calculation of the resistivity depends on the 
evaluation of the two-time correlation functions of the 
spins. 

III. EVALUATION OF THE CORRELATION 
FUNCTIONS 

In this section the correlation functions that appeared 
in Eq. (12) are evaluated by the cluster expansion 
method. This method is useful in studying dilute 
systems because it will be shown that for a random 
system the cluster expansion is equivalent to a density 
expansion. 

The general cluster expansion for the partition 
function was first discussed by Kubo.12 A very similar 
method will be used here for the correlation func­
tions. The calculation is illustrated by expanding 
(S/(f)«S»(0)) for i?^j. One defines 

H2(ij)=—JijSi'Sj, 

Hz(ijk)==—JijSi*$j—Jik$i'$k—JjkSj'$k, 

and, in general, 

Hn(ijk- ••)=-?, J&•$;, (13) 
Hi) 

where the sum is taken over all interacting pairs of the 
n spins. Next one defines the w-spin density matrix 

Pn(ijk- • .) = e-fiH»wk-'->/Tre-fiH»wk"-y>, (14) 

where the trace is taken over all the eigenstates of 
Hn(ijk- • •)• Then one defines the functions Fn by 

F2(ij) = TifriiijWtWflSif-*11*™ • S J , 
F9(ij | k) = Tr[p 3( i i^)^^(^)S^-^3(^^) . S . ] ^ 

and 

Fn(ij\kl- • •) = T r [ P n e ^ S ^ - ^ - S J , (15) 

and the functions Gn by 

G2(ij) = F2(ij), 
Gz(ij\k) = F*(ij\k)-G2(ij), 

and 

Gn(ij\kb") = Fn(ij\kb>-)- E Gn^(ij\kh") 
(n- l ) 

— E Gn-2(ij\kl' ••) 
(n-2) 

-£Gs(*/ |*)-G2(#). (16) 

k 

12 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962). 
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The symbol E(n-m) means a sum over all clusters of 
n—m spins that can be formed out of i, j and any set 
of n—m—2 of the remaining n—2 spins. Then the two-
time correlation function has the cluster expansion 

<S,GO-SJ(0)>=G,(«i)+£G,(*y|'*) 
k 

+ EG4(f/1 «)+•• • . (17) 
ikl) 

The proof for this expansion is very simple. It is clear 
that 

<si(r)-s4(o)>=JFWo, 
where No is total number of spins. From the definition 
of GtfQ, one can write 

GN0=FX0— E GN0-I— E ftvo-2* * • 
(iVo—1) (JVo—2) 

-T,Gz(ij\k)-G2(ij). 
k 

The result in Eq. (16) follows by transposition. The 
cluster property of the expansion is also easy to 
establish. If the spin k does not interact with any of 
the rest, then it is clear that 

H*(ijk) = H2(ij) 
and 

Hn(ijkl- • •) = Hn-1(ijl- • •)• 
So 

Fz{ij\k) = F2{ij), 

FA(ij\kl) = F9(ij\l), 
etc. Hence, 

Gi{ij\k)^Fi{ij)-Fi{ij)^0, 

Gt(ij\kl) = Ft(ij\r)-Gt(tj\D-Gi(ij) = 0, 

and, in general, 
Gn(f/ |«-••) = (>, 

for every n. The proof can be extended to show that 
if the spins can be divided into two noninteracting 
groups, then any Gn which contains members from both 
groups is identically zero. In other words, Eq. (17) is a 
linked cluster expansion. 

In a similar manner one can expand (S^G^-S^O)) 
into a cluster expansion whose leading terms are 

<Sy(f)-Sy(0)>=5(5+1) 
+£< {Trt>2(*.;Vr**W)SJ*-'r*«<'fl • S,-] 

-5 (5+ l )}+- - - . (18) 
Therefore, 

E(s,-(r)-s i(o)y<k-k')-R«v=^„5(5+i) 
ij 

+ E {TfoiiifieWnSje-***™• Sy]-5(5+l)} 
ij 

ij 

+higher order terms. (19) 
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In a poly crystalline random alloy one should average 
the result of Eq. (19) over the positions of the spins 
and the relative orientation of the pairs. This gives 

X E { T r [ p 2 ( 0 i ) e ^ W ) S 0 e - ^ W ) • S 0 ] - S ( S + l ) } 

+N0x E Tr[p2(Oi)^"^(°^S06-^2(o;). g j 

X S ^ + O M , (20) 

where $(qRj) = sm(qRj)/qRj, # = | k — k ' | , x is the 
density of the impurities No/N, 0 is any convenient 
reference point in the lattice, Rj is measured from 0, 
and the sums are now taken over the whole lattice. 
The higher order terms of the expansion involve the 
interaction of more than two spins, they are propor­
tional to higher powers of the density. 

The method of evaluation of the various terms in 
Eq. (20) is illustrated below for S= | . The identity 

exp(ao-r(F2) = i(l-(r1-cr2)e-3fl+i(3+cr1.<F2)e% (21) 

where a is any number and <7i, cr2 are Pauli matrices, 
will be very useful. For example, the two-spin partition 
function 

T r ( e - ^ ( o ^ ) = Tr[exp(Woicro-cFy)] 
_ I e - (3/4) /SJoj-|_ 3 e (1/4) fiJoj 

because Tr(ov<r2) = 0 and Tr ( l ) = 2. Since 

S0^-^2(oi) = ^fF 2 ( oy) S o + [ ;s 0 ) e-^2(oy)] j 

using Eq. (21) and the multiplication rules of the 
spinors, one can find 

[So,e- i^(oy)]==i^( (ToX(7.)^-(3/4)r/o/_^(i/4)fJoy]. 

Therefore, 

e^2(o7)S0g-irH2(o3-)==so_|_e1Ti?2(oy)[S0>6-irH2(ay)] 

= S 0 + i ( S 0 - Sy) (e*'o/+6r-tf/o/_ 2) 

where Eq. (21) is again used to expand the product. I t 
is now a simple matter to calculate the traces in Eq. 
(20). One finds that 

T r [p 2 (0 ;>^^ 0 ^S 0 e - i ^ (o , - ) . S o ] 

= 5 ( 5 + l ) + § ( i - C S o - S y ] ) [ c o s ( r / 0 y ) - l ] 
— CSo-S/]sin(f /oi) , 

Tr[p2(Oi)^^(oy )Soe-ifH2(o;). S.] 

=[So-si]-i(i-[So-si])[cos(r/oi)-i] 
+i[S 0 -Sy]sin(fJ 0y) , 

where 

[So-S i]=Tr[p2(Oi)So-Sy] 
= 3(gd/4)|3/o/_g-(3/4)p/0))/ 

4(g-(3/4)p/o/_|_3g(l/4)/JJ-of) . 

Also 
I - [So- S y ]= 2[S0- Sy] coth(Woy) • 

L I U 

Putting these results into Eq. (20), one obtains 

L<sy(r)-s f(o)y *-*'>•*«=fiVo 
+.Vo*i:[So-Sy]S((?2?y) 

+N& £ F(0i)[l-S(^)]+O(x2), (22) 
i 

where 

F(0j) = [So-Sy]{ [cos(r Joy ) -1 ] coth(i/3/oy) 
- i s i n ( f J 0 y ) } . (23) 

For general S the result can be written down in terms 
of the Clebsch-Gordan coefficients. 

To summarize this section, a cluster expansion is 
developed for the two time-correlation functions in Eq. 
(12). The leading terms of the expansion are explicitly 
calculated for S = J case. In a dilute random alloy the 
cluster expansion is shown to be a density expansion. 
The convergence of this series of x is very difficult to 
establish. One is more or less guided by physical 
intuition to expect that the properties of a dilute system 
at a finite temperature can be approximated by a finite 
number of terms of the expansion. In the present 
problem, the lowest order collective effect of the spins 
is given by the pair interaction terms. 

IV. CALCUATION OF THE RESISTIVITY 

In this section the resistivity is calculated by finding 
an approximate solution of the transport equation, Eq. 
(6). Using the result of Eq. (23), one can write the 
collision term Eq. (12) as, for S = | 

/ a / k \ 2TT/2 

( — ) =—E{D4(«M*0 

\ dt /eon 42V2 k' 

i 

-D4(«*<,«*)+E 5,(«* ' ,e*)8(g*j) lMl-/k ' )> , (24) 
i 

where 
A(ek>,ek) = lNod(ek-6k,) 

+N0xj: [S0-Sy]j 5(ek-ek,+Joj) 

ePJoj "I 

_| 5 ( € f c — € f c ' — J o y ) — C O t h ( | j 8 / o i ) 5 ( € f c — € f c ' ) [ , 

ePJo>'-l J 

and 

5y(er,€fc)=7V0x[So-Sy] J[l+coth(Ji8Joy)]fi(€jb-etO 

1 
—6(e&—€fc/+J0y) 

epJoj -I 

d(ek— ek' — Joy) f . (25) 
ePJQi-l J 
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The transport equation is solved by the ansatz13 Then one may carry out the summation on k' by using 

A=fk0+kzc(ek)dfk°/dek, 

fv = fv°+kM'c(ev)dfv°/dek>, k' 

where the z axis is chosen to be the direction of the ]£ 5(6^— ek>dzJoj) = iN(ek±:Joj), 
external field. The unknown function c(e]c) is assumed k ' 
to be a smooth function of the energy. Using the , , T / N 7Tr / o . i 
following relations: w h e r e N(€k) = mkV/Tr2 is the density of electron states 

at e&. Ordinarily Joj<^ek for ek=6F, so one may take 
5(€A-€fc0C/fc'°(l--/*o)-"/A0(l-"A'o)] = O, N(€k±Jy)2£N(eh) since iV(efc) is a smooth function. 

g(eA._efc/_j_/0.)r^J'oj ^,0(1— /&0) — /"^(l — fk'°)l = 0 Since it is assumed that c(ek) is also a smooth function, 

« ( € * - e f c , - / o i ) C V ( l - / * 0 ) - ^ ^ / t o ( 1 - . / i b / o ) ] = = o , 

one can readily verify that / ^ k \ _ 2irI2
h r(^ <^fk° 

so c(€kdzJoj)=c(ek). Then one can write 

/ d / k \ 2TTP dfk« 

( — J = M « * ) XiiV(€*)F(€*) , 
\ dt J con 47V2 act 

3 

-lA(ek,,ek)+-ZBj(ek,,ek)S(qRj)-]fk»(l-fk,<>) = 0. 
where 

J 

Hence, the zeroth-order term vanishes. If one also _ r „ « - i r i W!,T> v _ i , , , , p sn 

neglects the products of c% one obtains a linear + ^ o * l A » o - » i J L l - M * * y ; + A f (* / ^ J 

expression m c. 

/dfk\ 2icP ( 
= E ^(«*,«*0*.'c(e*'> 

\ dt /„oii 42V* k' I 

3 V X , 
e8Joj— I 

epJoj 1 

A 0 fk° 
dek' 

W ] -coth(Woy) 
— Z>(€fc',€jfc)^«c(€fc)-

where From Eq. (7) one finds that the drift term is 

0(e*,e*')=D4W*')+E 5i(€*,€jb/)s(^i)](i-/ifc
0) /a/A a/*0 *, a/,0 

+ [ i («*',€*)+£ Biie^kMqR^fk0 dt /drift d&* w de;t 

o*r . , \ , Tvr v- rc o no/ ™ N Putting these results into Eq. (6) one obtains 
••fNo8(ek-ek')+Nox2^ [S0-SyJS(g.#y) 

O f e ) ] - ^ -TrmPN(ek)F(ek)/4N2eE. (26) 

x«(*-c*)+tfo*£ CS0.Sy][i-s(^)] The current density is 

12 2e 2e f f d / * \ 

^ F k m(2wyJ \ dekJ 

X [ 5 ( e f c - ^ + / o y ) + ^ 5 ( e , - e „ - / o y ) ] = - , W c ( ^ ) / 3 ^ . (27) 

— coth(|j8/oi)5(€fc--€]fc0 . Therefore, the resistivity is 

E 3T2E 
Now one averages over the angles of k'. I t can be p ( r ) = — = W ^ F ) ] - 1 

verified that J ekvz 

<S forty) V = L (kRj), = 3irzmpN(€F)F (eF)/4N*e2kF*. 

(kz'SiqRj))^ = M(kRj)kz, Hence, 
where 

£ ( £ ) = ( l /2£ 2 ) ( l -cos2£) , P = P o { l + | ^ E [ S 0 - S y ] [ L ( £ ^ y ) - M ( ^ i ? y ) ] 

J f ( Q - ( l / 2 P ) C y + l + ( ^ l ) c o S 2 f - 2 f s m 2 a . - f , E C S o . S y ] [ l - Z ( ^ y ) + M ( ^ y ) ] 

13 See A. H. Wilson, The Theory of Metals (Cambridge Uni­
versity Press, Cambridge, England, 1954), p. 268. X tanh (|0/Oy) } , (28) 
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where 
Po=97r'mN(ek)N0/16N2e2kF" 

= 97rm2PF0x/16e2&F2. (29) 

Vo is the volume of the unit cell. 
I t is interesting to note that de Gennes and Friedel14 

and Rocher15 studied a similar problem, the effect of 
short-range order on the high-temperature resistivity 
of ferro- or antiferromagnetic metals, by the "elastic 
scattering approximation." The method essentially 
ignores the energy transfer between the spin system 
and the conduction electron. Or equivalently, one 
approximates 

(S i ( f ) -S i (0) )=<S r S i ) . (30) 

As a result the collision term Eq. (12) consists only of 
elastic scatterings and the transport equation is easy 
to solve. The resistivity as found this way is 

( (So-S3) 
p(T)=Po 1 + x Z LL(kFRj) 

I i S(S+l) 

- M ( M ? , - ) ] } , (31) 

where 

P o = 37rm2PV0xS(S+ l)/4e2kF
2 

for general spin S. The approximation in Eq. (30) is 
obviously a good one when S is very large. For S= J, 
one may compare Eq. (28) and Eq. (31) at high 
temperatures. To the first order of /3, it can be verified 
that 

(So • 5y)=[5o • Sjj==rr6pJoj, 

So the last term in the bracket of Eq. (28), which is the 
contribution of inelastic collisions, is of the order /32. 
Therefore, to the order ft, only the elastic scatterings 
need to be considered and Eqs. (28) and (31) agree. 
This conclusion should also hold for higher spins. 

V. DISCUSSION 

The result of Eqs. (28) and (31) shows that at high 
temperatures where the spin correlation is negligible, 
the resistivity is po. At lower temperatures where the 
collective effect of the spins becomes significant, the 
modification to the resistivity is at least of the order x2. 
These conclusions are in agreement with Brailsford and 
Overhauser. To the lowest order of jft/oy, one finds 

p(T)~po+a/T+0«32,x2), 
where 

a=PoxS(S+l) £ Jo£L(kFRi)--M(kFRi)y3kB (32) 
i 

and ks is the Boltzmann constant. If the sum in the 

14 P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71 
(1958). 

15 Y. A. Rocher, J. Phys. Radium 22, 367 (1961). 
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expression for a is positive, then the resistivity tends 
to rise when the temperature is lowered. The total 
resistivity of the material is p(T) plus a phonon 
contribution, i.e., 

MT) = p(T)+bT* 
^Po+a/T+bT*. 

I t is apparent that if a>0, pt(T) can have a minimum 
at a temperature T0 such that 

r 0 = (a/56)1'6 a*1/ ', (33) 

since a is proportional to x2. Therefore, the concen­
tration dependence of To disagrees with the experi­
mental law, Eq. (1), for most alloys. 

In dilute alloys where the spins are on the average 
rather far apart, the coupling mechanism between the 
spins has been shown to be due to the second order 
effect of the s-d exchange interaction.8-10 The coupling 
energy Joy is given by 

Joj=~v0(2kFRj)~4[2kFRj cos (2kFRj) - sin (2kFRj)] 

and vo=9irI2Z2/4:eF, Z is the valence of the solvent ion. 
The summation in the expression for a will involve 
lattice sums of $m(2kFRj)/Rja and cos(2kFR3)/Rf 
and their products. Since the sine and cosine function 
are rapidly oscillatory, one may approximate them and 
their products by the average values, i.e., 

cos (2kFRj)=sm (2kFRj)^0, 

cos(2kFRj) $m(2kFRj)^0, 

cos2 (2&Fi?y)^sin2 (2kFRj)^. 

This gives 
1 

£ Jo£L(kFRj)-M(kFRj)-]^v0 L " • 
i i 16kF

bR/ 

Therefore, a is, indeed, positive. If one approximates the 
lattice sum by an integral, one finds 

1 1 r^irRHR 2TT 

i R* VoJc R5 c5 ' 

where c= (Fo)1/3 is the linear dimension of the unit cell. 
From these results one finally obtains 

a^TPoxS(S+ l)v0/24:kB(kFcy. 

I t is now possible to make a numerical estimate of a. 
The solutions of manganese in copper is used as an 
example. The commonly accepted value for the s-d 
exchange-interaction constant | / | is about 0.5 eV.10 

Taking S—2 and the effective mass ratio to be unity, 
one finds for a 0.03% alloy 

Po^0.6XlO~8 li-cm, 

which is comparable to the observed minimum re­
sistivity 2.2X10 - 8 O-cm.16 The spin-coupling constant 

16 A. Kjekshus and W. B. Pearson, Can. J. Phys. 40, 98 (1962). 
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VQ is estimated to be about 4X 10~13 erg. Using 2kFC=2ir, 
one finds that for two spins at a distance c apart, the 
interaction energy is roughly 12°K. The resistivity 
minimum occurs at about 12°K. Hence, it is safe to 
use the high-temperature expansion at around this 
temperature because the average nearest neighbor 
distance is much larger than c. One then finds that for 
# = 0 . 0 3 % the change in resistivity from 8 to 12°K is 

I. INTRODUCTION 

EQUATIONS for the superconducting energy gap 
in the presence of a magnetic field on the basis of 

the Bardeen-Cooper-Schrieffer1 (BCS) and Bogoliubov 
microscopic theory have been derived by Gor'kov.2 

The validity of these equations is restricted to tem­
peratures T, such that TC—T<^TC, and to the local or 
London region where q£o<£l. Here Tc is the transition 
temperature, £o is the coherence length, and the q are 
the wave numbers of the field. By defining a wave 
function proportional to the energy gap, Gor'kov was 
able to transform his equations into the Ginzburg-
Landau3 phenomenological equations. In the following, 
the Gor'kov version of the Ginzburg-Landau equations 
is referred to as the GLG equations. 

The GLG approach has been used to estimate the 
magnetic field dependence of the gap.4 One finds good 
agreement between theory and experiment down to 

1 J. Bardeen, L. N. Cooper, and T. R. SchriefTer, Phys. Rev. 
108, 1175 (1957). 

2 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959) 
[translation: Soviet Phys.—JETP 9, 1364 (1959)]. 

3 V. L. Ginzburg and D. L. Landau, Zh. Eksperim. i Teor. Fiz. 
20,1064(1950). nvgg m 

4 See, for instance, D. H. Douglass, Jr., Phys. Rev. Letters 6,346 
(1961); 7, 14 (1961); Phys. Rev. 124, 735 (1961). 

roughly 
Ap = 5X10-13O-cm. 

However, the observed variation is of the order of 10~10 

Q-cm.16 This shows that the spin correlation effect does 
not explain the resistivity minimum phenomenon. At 
the present moment the resonant scattering theory 
seems to be more satisfactory because it is supported 
by another experiment. 

temperatures of about 0.7 Tc. However, one expects 
that at the lower temperatures corrections to the GLG 
equations will become significant. The aim of this paper 
is to generalize the GLG equations to all temperatures, 
under the assumption that the vector potential A(R) 
and the gap </>(R) v a r y slowly over the distance of a 
coherence length £o. Our main concern is to establish 
the connection between the first generalized GLG 
equation and the equation of Nambu and Tuan5 for 
the reduction of the energy gap at zero temperature 
in the local region. A characteristic point of their result 
is that the reduction of the gap depends only on the 
magnetic field strength. 

Gor'kov has derived his equations with the help of 
integral equations for the quasiparticle Green's function. 
These integral equations were solved by iteration in 
powers of the gap, and only terms up to the fourth 
order in the gap were kept. This latter approximation 
is the origin of the restriction TC—T<^TC. Our calcu­
lation is based on a generalization of Nambu's6 two-
component Green's function formalism to finite tem­
peratures which has been developed in a previous 
paper.7 Under the integral of the integral equation for 

5 Y. Nambu and S. F. Tuan, Phys. Rev. 128, 2622 (1962). 
6 Y. Nambu, Phys. Rev. 117, 648 (1960). 
7 L. Tewordt, Phys. Rev. 128, 12 (1962). 
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The energy gap equation and the current density expression for a superconductor in a slowly varying 
static magnetic field are derived on the basis of a generalization of Nambu's Green's function formalism to 
finite temperatures. In the integral equation for the quasiparticle Green's function GA(R;r) , expansions 
of GA, the self-energy part 2, and the vector potential A, about the center-of-mass coordinates R, are intro­
duced. The integral equation is solved by iteration, and the contributions of all orders in the gap <£(R) are 
summed up. With the help of GA, the generalized Ginzburg-Landau-Gor'kov (GLG) equations, valid at all 
temperatures for slowly varying A(R) and <£(R), are derived. For temperatures near Tc, correction terms 
to the coefficients of the GLG equations occur which are proportional to powers of | (3</> |2. For temperatures 
near 0°K, the function multiplying the term (V +2ieA)2</> behaves like exp(— |/3<£|). The first-order correc­
tion to the term proportional to A2 is found to be proportional to %£H2, for T near Tc and near 0°K (H = mag­
netic field strength, £o = coherence length). Our results are consistent with the formula of Nambu and Tuan 
for the reduction of the gap at 0°K in the London region. 


